银纳米立方体

$100.00$1,600.00

清除
SKU: N/A 分类:

描述

银纳米立方体

NanoSeedz™ provides high-quality silver nanocubes. Their specifications are given below. The number purities of the silver nanocubes are >95%. The nanocube samples are characterized and examined by extinction spectroscopy and electron microscopy before delivery. We try our best to maintain the size, shape uniformity and number purity of the silver nanocubes. However, slight variations in size are unavoidable due to fluctuations during synthesis.

Average edge length: 73.0 ± 3.2 nm and 101.5 ± 5.3 nm

质量浓度:0.05 mg/mL

表面包覆分子:poly(vinylpyrrolidone) (PVP,分子量:55000)

Dispersing solvent: ethanol (PVP, 0.2 mg/mL) + H2O at 1:1 v/v

流体动力直径:~130 nm和~180 nm

表面Zeta电位:-25 mV

银纳米立方体按下列方式提供。

平均边长(nm) 数量(瓶) 银的绝对质量(mg) 价格 (美元)
73.0 1 0.5 100
10 5 900
20 10 1600
101.5 1 0.5 100
10 5 900
20 10 1600

The silver nanocubes are suggested to be kept in solution and stored at 4 °C in a refrigerator without exposure to light. To ensure good dispersion of the silver nanocubes in solution before use, please EITHER perform sonication for 1 minute followed by quick vortex, OR 手动摇晃溶液直至银纳米立方体沉淀均匀分散。

参考文献

  1. C. Phan-Quang, N. Yang, H. K. Lee, H. Y. F. Sim, C. S. L. Koh, Y.-C. Kao, Z. C. Wong, E. K. M. Tan, Y.-E Miao, W. Fan, T. Liu, I. Y. Phang, X. Y. Ling. Tracking Airborne Molecules from Afar: Three-Dimensional Metal–Organic Framework Surface-Enhanced Raman Scattering Platform for Stand-Off and Real-Time Atmospheric Monitoring. ACS Nano, 2019, 13, 12090-12099.
  2. Y. F. Sim, H. K. Lee, X. Han, C. S. L. Koh, G. C. Phan-Quang, C. L. Lay, Y.-C. Kao, I. Y. Phang, E. K. L Yeow, X. Y. Ling. Concentrating Immiscible Molecules at Solid@MOF Interfacial Nanocavities to Drive an Inert Gas‐Liquid Reaction at Ambient Conditions. Angew. Chem., Int. Ed., 2018, 57, 17058-17062.
  3. S. L. Koh, H. K. Lee, X. Han, H. Y. F. Sim, X. Y. Ling. Plasmonic Nose: Integrating MOF-Enabled Molecular Pre-Concentration with Plasmonic Array for Molecular-Level Volatile Organic Compounds Vapor Recognition. Chem. Commun., 2018, 54, 2546-2549.
  4. K. Lee, Y. H. Lee, J. V Morabito, Y. Liu, C. S. L. Koh, I. Y. Phang, S. Pedireddy, X. Han, L.-Y. Chou, C.-K. Tsung, X. Y. Ling. Driving CO2 to a Quasi-Condensed Phase at the Interface between a Nanoparticle Surface and a Metal-Organic Framework at 1 bar and 298 K. J. Am. Chem. Soc., 2017, 139, 11513-11518.
  5. Yang, Y. H. Lee, C. L. Lay, X. Y. Ling. Tuning Molecular-Level Polymer Conformations Enables Dynamic Control over both the Interfacial Behaviors of Ag Nanocubes and their Assembled Metacrystals, Chem. Mater., 2017, 29, 6137-6144.
  6. S. L. Koh, H. K. Lee, G. C. Phan-Quang, X. Han, M. R. Lee, Z. Yang, X. Y. Ling. SERS- and Electrochemically-Active 3D Plasmonic Liquid Marble for Molecular-Level Spectroelectrochemical Investigation of Microliter Reaction. Angew. Chem., Int. Ed., 2017, 56, 8813-8817.
  7. Y. J. Yang, Y. H. Lee, I. Y. Phang, R. Jiang, H. Y. F. Sim, J. Wang, X. Y. Ling. A Chemical Approach to Break the Planar Configuration of Ag Nanocubes into Tunable Two-dimensional Metasurfaces. Nano Lett., 2016, 16 3872-3878.
  8. K. Lee, Y. H. Lee, I. Y. Phang, J. Wei, Y.-E Miao, T. Liu, X. Y. Ling. Plasmonic Liquid Marbles: A Miniature Substrateless SERS Platform for Quantitative and Multiplex Ultratrace Molecular Detection. Angew. Chem., Int. Ed., 2014, 53, 5054-5058.
  9. K. Lee, Y. H. Lee, Q. Zhang, I. Y. Phang, J. M. R. Tan, Y. Cui, X. Y. Ling. Superhydrophobic Surface-Enhanced Raman Scattering (SERS) Platform Fabricated by Assembly of Ag Nanocubes for Trace Molecular Sensing. ACS Appl. Mater. Interfaces, 2013, 5, 11409-11418.
  10. R. Tao, P. Sinsermsuksakul, P. Yang. Polyhedral Silver Nanocrystals with Distinct Scattering Signatures. Angew. Chem., Int. Ed., 2006, 45, 4597-4601.