银纳米立方体

HK$ 100-300

银纳米立方体

NanoSeedz™提供高品质的银纳米立方体,其规格如下。银纳米立方体的纯度(数量)>95%。所有纳米立方体样品在交付前均经过消光光谱和电子显微镜的表征和检测。我们尽力保持银纳米立方体的尺寸、形状和纯度的一致性。然而,由于合成过程中的波动,尺寸上的轻微差异在所难免。

平均边长:73.0 ± 3.2 nm 和 101.5 ± 5.3 nm

质量浓度:0.05 mg/mL

表面包覆分子:poly(vinylpyrrolidone) (PVP,分子量:55000)

分散溶剂:乙醇(PVP,0.2 mg/mL)+ H2O,体积比 1:1

流体动力直径:~130 nm和~180 nm

表面Zeta电位:-25 mV

银纳米立方体按下列方式提供。

平均边长(nm) 数量(瓶) 银的绝对质量(mg) 价格 (美元)
73.0 1 0.5 100
10 5 900
20 10 1600
101.5 1 0.5 100
10 5 900
20 10 1600

建议将银纳米立方体保存在溶液中,并置于4℃冰箱中避光保存。为确保银纳米立方体在使用前充分分散于溶液中,请进行以下操作之一:超声处理1分钟后快速涡旋振荡;或手动摇晃,以确保沉淀物均匀分散。

参考文献

  1. C. Phan-Quang, N. Yang, H. K. Lee, H. Y. F. Sim, C. S. L. Koh, Y.-C. Kao, Z. C. Wong, E. K. M. Tan, Y.-E Miao, W. Fan, T. Liu, I. Y. Phang, X. Y. Ling. Tracking Airborne Molecules from Afar: Three-Dimensional Metal–Organic Framework Surface-Enhanced Raman Scattering Platform for Stand-Off and Real-Time Atmospheric Monitoring. ACS Nano, 2019, 13, 12090-12099.
  2. Y. F. Sim, H. K. Lee, X. Han, C. S. L. Koh, G. C. Phan-Quang, C. L. Lay, Y.-C. Kao, I. Y. Phang, E. K. L Yeow, X. Y. Ling. Concentrating Immiscible Molecules at Solid@MOF Interfacial Nanocavities to Drive an Inert Gas‐Liquid Reaction at Ambient Conditions. Angew. Chem., Int. Ed., 2018, 57, 17058-17062.
  3. S. L. Koh, H. K. Lee, X. Han, H. Y. F. Sim, X. Y. Ling. Plasmonic Nose: Integrating MOF-Enabled Molecular Pre-Concentration with Plasmonic Array for Molecular-Level Volatile Organic Compounds Vapor Recognition. Chem. Commun., 2018, 54, 2546-2549.
  4. K. Lee, Y. H. Lee, J. V Morabito, Y. Liu, C. S. L. Koh, I. Y. Phang, S. Pedireddy, X. Han, L.-Y. Chou, C.-K. Tsung, X. Y. Ling. Driving CO2 to a Quasi-Condensed Phase at the Interface between a Nanoparticle Surface and a Metal-Organic Framework at 1 bar and 298 K. J. Am. Chem. Soc., 2017, 139, 11513-11518.
  5. Yang, Y. H. Lee, C. L. Lay, X. Y. Ling. Tuning Molecular-Level Polymer Conformations Enables Dynamic Control over both the Interfacial Behaviors of Ag Nanocubes and their Assembled Metacrystals, Chem. Mater., 2017, 29, 6137-6144.
  6. S. L. Koh, H. K. Lee, G. C. Phan-Quang, X. Han, M. R. Lee, Z. Yang, X. Y. Ling. SERS- and Electrochemically-Active 3D Plasmonic Liquid Marble for Molecular-Level Spectroelectrochemical Investigation of Microliter Reaction. Angew. Chem., Int. Ed., 2017, 56, 8813-8817.
  7. Y. J. Yang, Y. H. Lee, I. Y. Phang, R. Jiang, H. Y. F. Sim, J. Wang, X. Y. Ling. A Chemical Approach to Break the Planar Configuration of Ag Nanocubes into Tunable Two-dimensional Metasurfaces. Nano Lett., 2016, 16 3872-3878.
  8. K. Lee, Y. H. Lee, I. Y. Phang, J. Wei, Y.-E Miao, T. Liu, X. Y. Ling. Plasmonic Liquid Marbles: A Miniature Substrateless SERS Platform for Quantitative and Multiplex Ultratrace Molecular Detection. Angew. Chem., Int. Ed., 2014, 53, 5054-5058.
  9. K. Lee, Y. H. Lee, Q. Zhang, I. Y. Phang, J. M. R. Tan, Y. Cui, X. Y. Ling. Superhydrophobic Surface-Enhanced Raman Scattering (SERS) Platform Fabricated by Assembly of Ag Nanocubes for Trace Molecular Sensing. ACS Appl. Mater. Interfaces, 2013, 5, 11409-11418.
  10. R. Tao, P. Sinsermsuksakul, P. Yang. Polyhedral Silver Nanocrystals with Distinct Scattering Signatures. Angew. Chem., Int. Ed., 2006, 45, 4597-4601.